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TM Waves Guided by Nonlinear
Planar Waveguides

KAZUHIKO OGUSU, MEMBER, IEEE

Abstract —This paper presents a numerical method for calculating the
dispersion relations and field distributions of stationary nonlinear TM
waves guided by optical planar waveguides with intensity-dependent per-
mittivities. The method can basically treat arbitrary linear permittivity
profiles and arbitrary types of the nonlinearity, since it is based on a
numerical integration of the nonlinear wave equation. In this paper, the
numerical results for TM waves guided by a symmetric nonlinear film with
linear claddings and a three-layer waveguide with a nonlinear cover have
been presented for different mechanisms of the nonlinearity and compared
with those for TE waves. The treated waveguide is weakly guiding and the
nonlinearity is of the Kerr type. It is shown that under these assumptions,
the dispersion relations for TM waves are similar to those for TE waves
except for the power levels required for operation. The behavior of TM
waves is also little affected by the nonlinear mechanism. These features
can be derived from the fact that the longitudinal electric field component
E, is fairly small compared with the transverse component E,..

I. INTRODUCTION

ONLINEAR WAVES in optical planar waveguides

have recently received considerable attention in con-
nection with applications to optical signal processing and
integrated optics [1]-[4]. These waveguides consist of one
or more nonlinear media characterized by intensity-depen-
dent permittivities. The TE and TM waves can be sup-
ported in such nonlinear planar waveguides in the same
way as in linear waveguides. Since the TE waves have only
one electric field component, analytical solutions are avail-
able for many waveguide structures. To date, the disper-
sion relations for TE waves have been investigated for
several waveguide structures including three-layer wave-
guides [1]-[9] and graded-index waveguides [10], {11}, [23].
Moreover, the effects of non-Kerr-like nonlinearity on
nonlinear waves [12], [13] and the stability of nonlinear
waves [14] have been investigated. On the other hand,
since the TM waves have two electric field components,
i.e., longitudinal (E,) and transverse ( E,) ones, the analy-
sis is more complicated than that for TE modes. The
dispersion relations for TM waves have been analyzed
under many assumptions [15]-[17]. It has been pointed out
that a uniaxial approximation based on the E? nonlinear-
ity does not lead to physically useful results [18]. More
recently, the exact dispersion relations for TM waves
guided by a linear—nonlinear interface have been pre-
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sented [19]-[21]. However, very little is known about the
accurate behavior of nonlinear TM waves in optical planar
waveguides with multiple interfaces, especially three-layer
waveguides [22], which are important from the viewpoint
of device applications.

This paper presents a numerical analysis of stationary
nonlinear TM waves guided by optical planar waveguides.
Maxwell’s equations are solved numerically by using the
Runge—Kutta method. This numerical integration method
can be applied for every situation, including arbitrary
profiles of the linear permittivity and arbitrary types of the
nonlinearity. The usefulness and the versatility of the
method have already been demonstrated for the nonlinear
TE waves in several planar waveguides [23]. The dispersion
relations for the TM waves guided by three-layer wave-
guides are solved numerically for every mechanism of the
nonlinearity [19] and are compared with those for TE
waves. The electric field distributions are also presented. A
significant difference cannot be found between the disper-
sion relations for TM and TE waves except for the power
levels required for operation.

II. THEORY

We present a numerical method for calculating the dis-
persion relations for stationary nonlinear TM waves prop-
agating with a constant mode index and transverse field
distributions. The method can basically deal with general
nonlinear planar waveguides. However, it requires that
analytical solutions be available for the fields in semi-
infinite outer layers. As an example, we consider here a
three-layer waveguide with a Kerr-like nonlinear cover and
describe the method briefly [23]. For the sake of the
analysis, we introduce a hypothetical linear cover of the
type shown in Fig. 1, where the nonlinearity is neglected
and the fields decay exponentially in the — x direction.
The linear cover far from the guiding region does not bring
a large error, since the power carried by stationary waves is '
confined to the vicinity of the film. A few comments will
be made on this problem in the following section. The
stationary nonlinear TM waves have three field compo-
nents, and the vector fields can be expressed as

E(r.t)={Ex+ jEz}exp|j(wt — Bkoz)]
I-I(r,t)=Hyyexp[j(wt—,8koz)] (1)

where k, is the free-space wavenumber and g is the mode
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Fig 1. Cross section of the three-layer waveguide with a nonlinear
cover A hypothetical linear cover (x < - T') is ntroduced in order to
facilitate the analysis.

index. In (1), a specific phase relation among field compo-
nents is taken into account so that £, E., and H, are
real-valued variables. The imaginary unit ; indicates that
the x and z components of the electric field are /2 out of
phase. Although Maxwell’s equations for TM waves can be
found in [19], we summarize them for the sake of com-
pleteness.

A. Treatment of Maxwell’s Equations in the Nonlinear Cover

For TM waves, we obtain the following relations from
Maxwell’s equations by setting H,=0 and d/dy = 0:

(2)
(3)

el (4)

where

€, =€+ a(Ef + yEzz)

(5)
(6)

Here ¢, and p, are the permittivity and permeability of
free space, respectively; €., and €,, are elements of the
diagonal permittivity tensor. The nonlinearity is assumed
to be of the Kerr type. The quantity €, is the zero-field
permittivity of the nonlinear cover and a is a nonlinear
coefficient. The constant y takes on different values de-
pending on the mechanism of the nonlinearity [19]: vy =1
for electrostriction and heating, y=1/3 for electronic
distortion, and y = —1/2 for molecular orientation. Sub-
stituting (2) into (3) and (4), we have a system of first-order
differential equations for E_ and E..

To use the Runge—Kutta method as a numerical integra-
tion, the system must be rewritten in a normal form. After

ezzzec+a(E‘.2+yEx2).
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some mathematical manipulations, we have

dE, e, —2ay(1—¢, /B?) E2

= = — BkoE, X — : 7
dx BloE. €, +t2aE? Y
dE, K,
—=—(e,,—B?)E.. 8
dx B (exx 18 ) X ( )

For given interface field intensities £ (—7) and E.(—T),
we can calculate the fields £ (x) and E,(x) at any posi-
tion in the nonlinear cover by integrating (7) and (8)
numerically. Then H (x)is calculated from (2). Numerical
solutions for E_(0) and H (0) at the cover—film interface
are used in the following boundary value problem.

B. Characteristic Equation

We here consider a procedure for obtaining the disper-
sion relations for TM waves. We first present the fields in
linear regions:

H,(—T)exp[¢ko(x+T)]. x<—-T
_ H,(0){cos(xkyx)+ G-sin(kkyx)}, 0<x<d
Y | H,(0){cos(kkod )+ G-sin(xk,d)}
-exp [ — 8ky(x —d)], d<x
()
where
£2=p"—c, (10)
K*=¢, — p* (11)
=B —¢, (12)
1— = tan (xkod
-t
efS €j8 an(“ 0 )
G=—-L y . (13)
€K €
1+ —tan(rk,d)
€K

Here H (—T) and H (0) are the magnetic field intensities
at interfaces x = — T and x =0, respectively. In (9), the
continuity of H, and E, at the film-substrate interface
x=d has already been considered and the z and time
dependence has been dropped. If «? < 0, the circular func-
tions in (9) and (13) are replaced by the corresponding
hyperbolic functions.

For an interface intensity E.(~ T') given as a nonlinear
parameter, we determine the mode index B so that the
x-directed wave impedance E, /H, is continuous at both
the interfaces x = — T and x = 0. Once a trial value for the
mode index is given, we can determine H (—T) from the
continuity of wave impedance at the interface x = — T~

E;(“T) £ Ko
H—T)LZ\/E

and subsequently E.(—T) from (2). For these initial val-
ues, E,(0) and H (0) at the nonlinear cover—film interface
are calculated by using the Runge-Kutta method. From
the continuity condition of wave impedance at x =0, we

(14)
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obtain the following characteristic equation:

E0)  « [B
’Hy(o)_ ef\/: ¢

In this paper, the root B8 of this equation is determined by
using Newton’s method. If the waveguide is symmetric,
only one half of the waveguide cross section is considered.
The mode index can be obtained by E,(x,) =0 for even
modes and by E,(x,) =0 for odd modes, where x, is the
coordinate of the waveguide axis. The existence of asym-
metric modes can be generally expected because of an
intensity-dependent permittivity effect even if the wave-
guide is symmetric. However, these modes can be regarded
as modes in the asymmetric waveguide. Once the mode
index is determined, we can easily calculate the total power
flow by

(15)

(16)

Here the power flow in linear regions can be expressed
analytically. -

1 [=¢] B
= 5/ <><)Ex(x)Hyk(x) dx.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results for the
dispersion relations of two three-layer waveguides: one is
the three-layer waveguide with a nonlinear cover shown in
Fig. 1 and the other is the symmetric nonlinear film of
thickness d bounded by two identical linear claddings of
permittivity €, ( =¢,). In the latter case, the elements of
the permittivity tensor of the nonlinear film are given by
(5) and (6), where €_ is replaced by ¢;. The mode index was
computed to within the tolerance 10~° for a given inter-
face amplitude using the fourth-order - Runge-Kutta

method. The nonlinear region was divided into 2000

segments. All numerical results presented here were cal-
culated for the following values: free-space wavelength
A =0.5145 pm, film permittivity ¢, =1.57> = 2.4649, cover
(or cladding) permittivity €, =1.55%=2.4025, substrate
permittivity e ( =e¢,) =2.4025, and nonlinear coefficient
a=0.6377x10"1* m?/V2, The refractive index difference
between film and cover (or substrate) is 0.02 and hence the
waveguide is weakly guiding. But this refractive index
difference is fairly large for nonlinear device applications.

First, we present the results for the symmetric nonlinear
film. Fig. 2 shows the total power flow for the first three
TM, modes (n=0,1,2) as a function of the mode index
for the film thickness d = 2.0 pm. The dispersion relations
are calculated for three mechanisms of the nonlinearity
(y=1,1/3,-1/2). For comparison, the tesults for TE
modes are also shown in the figure. The nonlinearity for
TE waves arises from the transverse field component E,.
In this example, the fundamental (n = 0) and first higher
order (n=1) modes can be supported even if the film is
linear (a=0). These TM and TE modes are almost degen-
erate in the limit a =0 (or zero field), since the waveguide
treated here is weakly guiding. The dispersion curves for
second higher order (n =2) modes have a double-valued
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Fig. 2. Dependence of the total power flow P on the mode index g for
the first three TM,, modes (n =0, 1, and 2) guided by the nonlinear
symmetric wavegnide with linear claddings. The dispersion curves for
TM,, modes are plotted for three mechanisms of the nonlinearity; y =1
(solid line), 1/3 (dotted—dashed line), and —1/2 (dashed line), to-
gether with those for TE, modes (dotted line).

behavior, because the power flow in the linear cladding
diverges in the limit B =¢}/2 It is found that the power
flow guided by the TM wave is always greater than that

.guided by the TE wave with the same value of 8. For a

given mode index, the power flow required for nonlinear
TM waves also increases as the value of y decreases. The
reason is that for decreasing values of vy, the nonlinear
effect becomes equivalently small and hence further power
is required to achieve the same values of 8. A similar
situation takes place for nonlinear TE waves in saturable
and non-Kerr-like nonlinear media [12], [13], [22], [23]. In
contrast to these cases, the nonlinear TM waves are not
strongly affected by the value of y, as shown in Fig. 2.
This means that E, is the dominant field component and
the nonlinearity for TM waves arises mainly from this .
component. Although this conclusion has already been
pointed out [18], we calculate the electric field distribu-
tions £, (x) and E,(x) to confirm it numerically. Fig. 3
shows the distributions of TM, and TM,; modes in the
waveguide treated in Fig. 2 for three values of the mode
index. Note that field distributions are drawn so that the
maximum value of E (x) becomes unity. Fig. 3 shows that
the field ratio E, .. /E, na.c 1S Dot strongly influenced by
the power flow, because the field-induced change in refrac- -
tive index is of the order of 0.01 and the nonlinear wave-
guide can be still regarded as a weakly guiding waveguide.
In our example, |E,(x)|2,, is approximately 100 times less
than |E (x)|2... However, the field distributions depend
strongly on the power flow. As the mode index increases,
the fundamental TM,, mode becomes a self-focusing wave
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Fig. 3. Electric field distributions of the TM; and TM, modes in the
nonlinear symmetric waveguide for d =2 pm and v=—1/2. (a) TM,

mode. (b) TM; mode
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Fig. 4 Dependence of the total power flow P on the mode index g for
the TM,, mode gmded by the three-layer waveguide with nonlmear
cover for three film thicknesses d The dispersion curves are plotted for
two nonlinear mechanisms; y =1 (solid line) and —1/2 (dashed line),
together with those for TE, modes (dotted line).

1.59

in an infinite nonlinear medium, whose field H, (or E,) is
approximately expressed by the hyperbolic function
“sech.” For the most part, the general features of nonlin-
ear TM modes are similar to those of nonlinear TE modes
except for the power levels required for operation.

Next, we present the results for the three-layer wave-
guide with a nonlinear cover. Fig. 4 shows the total power
flow for the fundamental TM,, mode as a function of the
mode index for the three film thicknesses 4 = 0.75, 1.0,
and 1.5 pm. Although the results for y=1/3 are not
shown in the figure, the dispersion curve is located be-
tween two curves for y=1 and —1/2. The difference of
the dispersion relations between TM, and TE, waves is
very small at low power levels. Fig. 5 shows the electric
field distributions E (x) and £ (x) of the TM, mode for
d=1.5 pm. The field distributions are drawn for three
values of B. The behavior of the TM;, mode can be
interpreted in the same way as for the TE, mode [3]. As
the power flow increases, the field maximum shifts out of
the film region into the cover because of the increase in
refractive index, and the TM, mode becomes a surface
polariton guided by a single interface between linear and
nonlinear dielectrics {19]—[21]. The multivalued behavior in
the mode index, that is, the local maximum in the power
flow, appears for the film thickness over a certain critical
value d_, .. The critical thickness for the TM, mode is
slightly larger than that for the TE, mode. In this example,
the critical thickness d,,, is 0.87. 0.84 pm and the mini-
mum power flow required for pulling the field maximum
into the nonlinear cover is 33.4, 31.8 mW /mm for the
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Fig. 5. FElectric field distributions of the TM, mode in the three-layer
waveguide with nonlinear cover for d =1.5 pm and y=-1/2. 8=
1.5655115, 1.5664, and 1.59 correspond to P =0.0, 66.7 (maximum
power), and 44.0 mW /mm, respectively.

TM, mode with y=-1/2 and the TE, mode, respec-
tively.

Fig. 6 shows the total power flow for the TM; mode as a
function of the mode index for the two film thicknesses
d =1.5 and 2.0 pm. The mode index is always smaller than
the refractive index of the linear film, and the peak ap-
pears in the power flow. Fig. 7 shows the electric field
distributions of the TM;, mode for d =1.5 pm. The TM,
mode has two field maxima in the film in the linear (or
zero-field) case. One field maximum moves toward and
into the nonlinear cover as the mode index increases, but
the other remains in the film. Moreover, the field ratio
E, .. /E. . unexpectedly decreases with increasing mode
index. Therefore, the dispersion relations for the TM,
mode are quite close to those for the TE, mode compared
with previous examples, as shown in Fig. 6. In general, the
behavior of higher order TM,, modes (n > 2) is similar to
that of the TM; mode.

Finally, the only approximation used in the above calcu-
lation of the three-layer waveguide with a nonlinear cover
is the introduction of the hypothetical linear cover. Since
the maximum of the field moves within the nonlinear cover
with guided power, the hypothetical boundary should be
placed so as to make the influence of the linear cover on
the dispersion relations negligible. In our calculation,
the hypothetical boundary was located at x=—-3.0~
—5.0 um. Fortunately, it is seen from Figs. 5 and 7 that
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Fig. 6. Dependence of the total power flow P on the mode index 8 for
the TM; mode guided by the three-layer waveguide with nonlinear
cover for two film thicknesses d. The dispersion curves are plotted for
two nonlinear mechamsms; y =1 (solid line) and —1/2 (dashed line),
together with those for TE; modes (dotted line).
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Fig. 7. Plectric field distributions of the TM; mode m the three-layer
waveguide with nonlinear cover for d =15 pm and y=-1/2. =
1.5540335, 1.5594, and 1.5605 correspond to P = 0.0, 28.6 (maximum
power), and 22.0 mW /mm, respectively.
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the peak of the field is not very far away from the
nonlinear cover—film interface in the steady-state case
calculated here. Some improved approaches are available,
if necessary. One is to introduce a hypothetical nonlinear
cover with y =0 or 1 instead of the linear cover. In that
case, the field solution is expressed by the hyperbolic
function “sech” [16]. Another is to transform the semi-
infinite region into a finite region, as in [19]. Although
non-Kerr-like nonlinear waveguides have not been investi-
gated in this paper, it is assumed that the dispersion
relations for TM waves are almost the same as those for
TE waves. It is also expected that the stability of nonlinear
TM waves obeys a criterion for the stability of TE waves.

IV. CONCLUSION

We presented a numerical method for calculating the
dispersion relations for stationary nonlinear TM waves
guided by nonlinear planar waveguides. The method 1s
based on the numerical integration of the nonlinear wave
equation. In this paper, the dispersion relations for TM
waves in typical three-layer waveguides have been solved
numerically for every mechanism of the nonlinearity and
compared with those for TE waves. The electric field
distributions have also been presented to facilitate under-
standing of nonlinear TM waves. It is shown that the
dispersion curves for TM waves are similar to those for TE
waves. The present method has the advantage that it can
be applied to wide classes of nonlinear planar waveguides
with arbitrary linear permittivity profiles and arbitrary
types of the nonlinearity. The presented numerical results
and method will be useful in checking the validity of new
analytical techniques for solving nonlinear TM wave prob-
lems.
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