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Abstract —This paper presents a numerical method for calculating the

dkpersion relations and field distributions of stationary nonlinear TM
waves gnided by optical planar wavegnides with intensity-dependent per-

mittivities. The method can basicafly treat arbitrary linear permittivity

profiles and arbitrary types of the nonlinearity, since it is based on a

numerical integration of the nonlinear wave equation. In this paper, the

numerical results for TM waves guided by a symmetric nonlinear film with

linear cIaddings and a three-layer wavegoide with a nonlinear cover have

been presented for different mechanisms of the nonlinearity and compared

with those for ‘H? waves. The treated wavegnide is weakly guiding and the

nonlinearity is of the Kerr type. It is shown that under these assumptions,

the dispersion relations for TM waves are similar ,to those for TX waves

except for the power levels required for operation. The bebavior of TM

waves is also little affected by the nonlinear mechanism. These features

can be derived from the fact that the longitudinal electric field component

Ez is fairly smafl compared with the transverse component E..

I. INTRODUCTION

N ONLINEAR WAVES in optical planar waveguides

have recently received considerable attention in con-

nection with applications to optical signal processing and

integrated optics [1]–[4]. These waveguides consist of one

or more nonlinear media characterized by intensity-depen-

dent permittivities. The TE and TM waves can be sup-

ported in such nonlinear planar waveguides in the same

way as in linear waveguides. Since the TE waves have only

one electric field component, analytical solutions are avail-

able for many waveguide structures. To date, the disper-

sion relations for TE waves have been investigated for

several waveguide structures including three-layer wave-

guides [1]-[9] and graded-index waveguides [10], [11], [23].
Moreover, the effects of non-Kerr-like nonlinearity on

nonlinear waves [12], [13] and the stability of nonlinear

waves [14] have been investigated. On the other hand,

since the TM waves have two electric field components,

i.e., longitudinal (E=) and transverse ( EX) ones, the analy-

sis is more complicated than that for TE modes. The

dispersion relations for TM waves have been analyzed

under many assumptions [15]–[17]. It has been pointed out

that a uniaxial approximation based on the E,z nonlinear-

ity does not lead to physically useful results [18]. More

recently, the exact dispersion relations for TM waves

guided by a linear–fionlinear interface have been pre-
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sented [19]–[21]. However, very little is known about the

accurate behavior of nonlinear TM waves in optical planar

waveguides with multiple interfaces, especially three-layer

waveguides [22], which are important from the viewpoint

of device applications.

This paper presents a numerical analysis of stationary

nonlinear TM waves guided by optical planar waveguides.

Maxwell’s equations are solved numerically by using the

Runge–Kutta method. This numerical integration method

can be applied for every situation, including arbitrary

profiles of the linear permittivity and arbitrary types of the

nonlinearity. The usefulness and the versatility of the

method have already been demonstrated for the nonlinear

TE waves in several planar waveguides [23]. The dispersion

relations for the TM waves guided by three-layer wave-

guides are solved numerically for every mechanism of the

nonlinearity [19] and are compared with those for TE

waves. The electric field distributions are also presented. A

significant difference cannot be found between the disper-

sion relations for TM and TE waves except for the power

levels required for operation.

II. THEORY

We present a numerical method for calculating the dis-

persion relations for stationary nonlinear TM waves prop-

agating with a constant mode index and transverse field

distributions. The melhod can basically deal with general

nonlinear planar waveguides. However, it requires that

analytical solutions be available for the fields in semi-

infinite outer layers. As an example, we consider here a

three-layer waveguide with a Kerr-like nonlinear cover and

describe the method briefly [23]. For the sake of the

analysis, we introduce a hypothetical linear cover of the

type shown in Fig. 1, where the nonlinearity is neglected

and the fields decay exponentially in the – x direction.

The linear cover far from the guiding region does not bring

a large error, since the power carried by stationary waves is

confined to the vicinity of the film. A few comments will

be made on this problem in the following section. The

stationary nonlinear TM waves have three field compo-

nents, and the vector fields can be expressed as

E(r, t) = {E=x+jE.z }exP[j(@t–~~.z)]

H(Y, t) = Hyyexp [j(~~ ‘P~o~)l (1)

where k, is the free-space wavenumber and B is the mode
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Fig 1. Cross section of the three-layer waveguide with a nonlinear

cover A hvuothetical linear cover (x < – T ) is introduced in order to
facilitate t~; anatysis

index. In (l), a specific phase relation among field compo-

nents is taken into account so that EX, E., and H, are

real-valued variables. The imaginary unit j-indicates that

the x and z components of the electric field are 7/2 out of

phase. Although Maxwell’s equations for TM waves can be

found in [19], we summarize them for the sake of com-

pleteness.

A. Treatment of Maxwell’s Equations in the Nonlinear Cover

For TM waves, we obtain the following relations from

Maxwell’s equations by setting Hz= O and 6’/6’y = O:

1

i

co
— <,XEX

‘“=7 PO

dH,, r_.–k. % c.,E,
dx Po

(2)

(3)

(4)

where

czz=cc+a(Ez2+yEj). (6)

Here co and p. are the permittivity and permeability of

free space, respectively; c,. and C=, are elements of the

diagonal permittivity tensor. The nonlinearity is assumed

to be of the Kerr type. The quantity c, is the zero-field

permittivity of the nonlinear cover and a is a nonlinear

coefficient. The constant y takes on different values de-

pending on the mechanism of the nonlinearity [19]: y = 1

for electrostriction and heating, y = 1/3 for electronic

distortion, and y = – 1/2 for molecular orientation. Sub-

stituting (2) into (3) and (4), we have a system of first-order

differential equations for E. and E:.

To use the Runge–Kutta method as a numerical integra-

tion, the system must be rewritten in a normal form. After

some mathematical manipulations, we have

dEY –2ay(l – E..x//)@)@
— = - ~koEZ x ‘“
dx CXX+2(XE;

(7)

dEz lio
—=#xx-B’)%
dx

(8)

For given interface field intensities ET( – T) and E,( – T ),

we can calculate the fields E,(x) and E,(x) at any posi-

tion in the nonlinear cover by integrating (7) and (8)

numerically. Then HY( x ) is calculated from (2). Numerical

solutions for E.(O) and H,,(O) at the cover–film interface

are used in the ‘following boundary value problem.

B. Characteristic Equation

We here consider a procedure for obtaining the disper-

sion relations for TM waves. We first present the fields in

linear regions:

(~}(-T)exp[fkO( x+T)],

1
H = H}(0) {cos(Kkox) +G. sin(rckox)},

.V
Hy(0){cos(~kod) +G. sin(~kod)}

.exp[–~ko(x– d)],

l–~tan(rckod)

G=–qx f
<SK <, s

I+ntan(tckod)
.s

x<– T

O<x<d

d<x

(9)

(lo)

(11)

(12)

(13)

Here HY( – T) and ~Y(0) are the magnetic field intensities

at interfaces x = – T and x = O, respectively. In (9), the

continuity of H, and E= at the film–substrate interface

x = d has already been considered and the z and time

dependence has been dropped. If K2 <0, the circular func-

tions in (9) and (13) are replaced by the corresponding

hyperbolic functions.

For an interface intensity E.Y(– T) given as a nonlinear
parameter, we determine the mode index ~ so that the

x-directed wave impedance E, /HY is continuous at both

the interfaces x = – T and x = O. Once a trial value for the

mode index is given, we can determine HY( – T) from the

continuity of wave impedance at the interface x = – T:

E=(– T) t Po

-FHY(– T)=– C, ~.
(14)

and subsequently EZ( – T ) from (2). For these initial val-

ues, E=(0) and HY(0) at the nonlinear cover–film interface

are calculated by using the Runge–Kutta method. From

the continuity condition of wave impedance at x = O, we
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obtain the following characteristic equation:

(15)

In this paper, the root ~ of this equation is determined by

using Newton’s method. If the waveguide is symmetric,

only one half of the waveguide cross section is considered.

The mode index can be obtained by E,(xO) = O for even

modes and by EX(XO) = O for odd modes, where XO is the

coordinate of the waveguide axis. The existence of asym-

metric modes can be generally expected because of an

intensity-dependent perrnittivit y effect even if the wave-

guide is symmetric. However, these modes can be regarded

as modes in the asymmetric waveguide. Once the mode

index is determined, we can easily calculate the total power

flOW by

P=y Ex(x)Hy(x)dx. (16)
w

Here the power flow in linear regions can be expressed

analytically.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results for the

dispersion relations of two three-layer waveguides: one is

the three-layer waveguide with a nonlinear cover shown in

Fig. 1 and the other is the symmetric nonlinear film of

thickness d bounded by two identical linear claddings of

permittivity cc ( = c,). In the latter case, the elements of

the permittivity tensor of the nonlinear film are given by

(5) and (6), where cc is replaced by Cf. The mode index was

computed to within the tolerance 10 – 9 for a given inter-

face amplitude using the fourth-order Runge–Kutta

method. The nonlinear region was divided into 2000

segments. All numerical results presented here were cal-

culated for the following values: free-space wavelength

A = 0.5145 pm, film perrnittivity Cf = 1.572 = 2.4649, cover

(or cladding) permittivity EC= 1.552= 2.4025, substrate

permittivity c,( = EC)= 2.4025, and nonlinear coefficient
a = ().6377 x 10 – 11 m2/V 2. The refractive index difference

between film and cover (or substrate) is 0.02 and hence the

waveguide is weakly guiding. But this refractive index

difference is fairly large for nonlinear device applications.

First, we present the results for the symmetric nonlinear

film. Fig. 2 shows the total power flow for the first three

TM. modes (n = 0,1, 2) as a function of the mode index

for the film thickness d = 2.0 pm. The dispersion relations

are calculated for three mechanisms of the nonlinearity

(Y= 1,1/3, – 1/2). For comparison, the results for TE
modes are also shown in the figure. The nonlinearity for

TE waves arises from the transverse field component EY.

In this example, the fundamental (n = O) and first higher

order (n =1) modes can be supported even if the film is

linear (a= O). These TM and TE modes are almost degen-

erate in the limit a = O (or zero field), since the waveguide

treated here is weakly guiding. The dispersion curves for

second higher order (n = 2) modes have a double-valued

0.

3
0

7.55 1.57 1.59

Mode index 13

Fig. 2, Dependence of the total power flow P on the mode index B for

the first three TM,, modes (n = O, 1,and 2) guided by the nonlinear

symmetric waveguide with linear claddings. The dispersion curves for

TMH modes are plotted for three mechanisms of the nonlinearity; y =1

(solid line), 1/3 (dotted-dashed line), and – 1/2 (dashed line), to-

gether with those for TEn modes (dotted line).

behavior, because the power flow in the linear cladding

diverges in the limit /3= c~(z. It is found that the power

flow guided by the TM wave is always greater than that

guided by the TE wave with the same value of ~. For a

given mode index, the power flow required for nonlinear

TM waves also increases as the value of y decreases. The

reason is that for decreasing values of y, the nonlinear

effect becomes equivalently small and hence further power

is required to achieve the same values of ~. A similar

situation takes place for nonlinear TE waves in saturable

and non-Kerr-like nonlinear media [12], [13], [22], [23]. In

contrast to these cases, the nonlinear TM waves are not

strongly affected by the value of y, as shown in Fig. 2.

This means that EX is the dominant field component and

the nonlinearity for TM waves arises mainly ,from this

component. Although this conclusion has already been

pointed out [18], we calculate the electric field distribu-

tions EX(.X) and E=(x) to confirm it numerically. Fig. 3

shows the distributions of TMO and TMI modes in the

waveguide treated in Fig. 2 for three values of the mode

index. Note that field distributions are drawn so that the

maximum value of EX(X ) becomes unity. Fig. 3 shows that

the field ratio ,?Iz,l=/EX~= is not strongly influenced by

the power flow, because the field-induced change in refrac-

tive index is of the order of 0.01 and the nonlinear wave-

guide can be still regarded as a weakly guiding waveguide.

In our example, lEz(x)l~= is approximately 100 times less

than IEX(X) I&u. However, the field distributions depend
strongly on the power flow. As the mode index increases,

the fundamental TMO mode becomes a self-focusing wave
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Fig. 3. Electric field distributions of the TMO and TMl modes in the

nonlinear symmetric waveguide for d = 2 ~m and y = – 1/2. (a) TMO

mode. (b) TMI mode

I [ 1

1 55 1.57 1.59
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Fig. 4 Dependence of the total power flow P on the mode index /3 for

the TMO mode gmded by the three-layer wavegoide with nonhnear
cover for three fdm thicknesses d The dispersion curves are plotted for

two nonlinear mechanisms; y = 1 (solid line) and – 1/2 (dashed line),

together with those for TE{l modes (dotted line).

in an infinite nonlinear medium, whose field Hi, (or E, ) is

approximately expressed by the hyperboli; function

“ sech.” For the most part, the general features of nonlin-

ear TM modes are similar to those of nonlinear TE modes

except for the power levels required for operation.

Next, we present the results for the three-layer wave-

guide with a nonlinear cover. Fig. 4 shows the total power

flow for the fundamental TMO mode as a function of the

mode index for the three film thicknesses d = 0.75, 1.0,

and 1.5 pm. Although the results for y = 1/3 are not

shown in the figure, the dispersion curve is located be-

tween two curves for y = 1 and – 1/2. The difference of

the dispersion relations between TM ~ and TEO waves is

very small at low power levels. Fig. 5 shows the electric

field distributions 13X(x) and Ez( x ) of the TMO mode for

d =1.5 pm. The field distributions are drawn for three

values of ~. The behavior of the TMO mode can be

interpreted in the same way as for the TEO mode [3]. As

the power flow increases, the field maximum shifts out of

the film region into the cover because of the increase in

refractive index, and the TM ~ mode becomes a surface

polariton guided by a single interface between linear and

nonlinear dielectrics [19] –[21]. The multivalued behavior in

the mode index, that is, the local maximum in the power

flow, appears for the film thickness over a certain critical

value dm,n. The critical thickness for the TMO mode is

slightly larger than that for the TEO mode. In this example,

the critical thickness dm,n is 0.87. 0.84 pm and the mini-

mum power flow required for pulling the field maximum

into the nonlinear cover is 33.4, 31.8 mW/mm for the
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Fig. 5. Electric field distributions of the TMO mode in the three-layer
waveguide with nonlinear cover for d = 1.5 pm and y = – 1/2. /3 =

1.5655115, 1.5664, and 1.59 correspond to P = 0.0, 66.7 (mammum
power), and 44.0 mW/mm, respectively.

TMO mode with y = – 1/2 and the TEO mode, respec-

tively.

Fig. 6 shows the total power flow for the TMI mode as a

function of the mode index for the two film thicknesses

d = 1.5 and 2.0 pm. The mode index is always smaller than

the refractive index of the linear film, and the peak ap-

pears in the power flow. Fig. 7 shows the electric field

distributions of the TMI mode for d = 1.5 pm. The TMl

mode has two field maxima in the film in the linear (or

zero-field) case. One field maximum moves toward and

into the nonlinear cover as the mode index increases, but

the other remains in the film. Moreover, the field ratio

E 2nrax/ExInax unexpectedly decreases with increasing mode

index. Therefore, the dispersion relations for the TMI

mode are quite close to those for the TEI mode compared

with previous examples, as shown in Fig. 6. In general, the

behavior of higher order TM. modes (n > 2) is similar to

that of the TMI mode.

Finally, the only approximation used in the above calcu-

lation of the three-layer waveguide with a nonlinear cover

is the introduction of the hypothetical linear cover. Since

the maximum of the field moves within the nonlinear cover

with guided power, the hypothetical boundary should be

placed so as to make the influence of the linear cover on

the dispersion relations negligible. In our calculation,

the hypothetical boundary was located at x = – 3.0-

– 5.0 pm. Fortunately, it is seen from Figs. 5 and 7 that

945

1 1 1

i.55 1.56 1.57

Mode index 13

Fig. 6. Dependence of the total power flow P on the mode index ~ for

the TMI mode guided by the three-layer waveguide with nonlinear

cover for two fdm thicknesses d, The dispersion curves are plotted for

two nonlinear mechamsms; y =1 (solid line) and – 1/2 (dashed line),

together with those for TEI modes (dotted line).
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the peak of the field is not very far away from the

nonlinear cover–film interface in the steady-state case

calculated here. Some improved approaches are available,

if necessary. One is to introduce a hypothetical nonlinear

cover with y = O or 1 instead of the linear cover. In that

case, the field solution is expressed by the hyperbolic

function “ sech” [16]. Another is to transform the semi-

infinite region into a finite region, as in [19]. Although

non-Kerr-like nonlinear waveguides have not been investi-

gated in this paper, it is assumed that the dispersion

relations for TM waves are almost the same as those for

TE waves. It is also expected that the stability of nonlinear

TM waves obeys a criterion for the stability of TE waves.

IV. CONCLUSION

We presented a numerical method for calculating the

dispersion relations for stationary nonlinear TM waves

guided by nonlinear planar waveguides. The method is

based on the numerical integration of the nonlinear wave

equation. In this paper, the dispersion relations for TM

waves in typical three-layer waveguides have been solved

numerically for every mechanism of the nonlinearity and

compared with those for TE waves. The electric field

distributions have also been presented to facilitate under-

standing of nonlinear TM waves. It is shown that the

dispersion curves for TM waves are similar to those for TE

waves. The present method has the advantage that it can

be applied to wide classes of nonlinear planar waveguides

with arbitrary linear permittivity profiles and arbitrary

types of the nonlinearity. The presented numerical results

and method will be useful in checking the validity of new

analytical techniques for solving nonlinear TM wave prob-

lems.
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